WhatsApp Number: +1(249) 265-0080
Customer Loyalty Measurement
Imagine you have been hired to develop a research study for a company evaluating the impact on customer loyalty of a recent change in their customer service protocols.
Discuss the following with your classmates.
- Based on the method you would choose to evaluate this question, what kind of variable would you be working with? Is it nominal, ordinal, interval, or ratio?
- Describe how this variable is nominal, ordinal, interval, or ratio, and how affects how you would evaluate the data you collected.
Check our essay writing services here
Customer Loyalty Measurement
Customer Loyalty Measurement refers to the process of evaluating how likely customers are to continue engaging with a business, often assessed through surveys or behavioral metrics. It helps organizations understand the effectiveness of service strategies and their influence on customer retention and satisfaction.
To evaluate the impact of a recent change in customer service protocols on customer loyalty, I would likely choose a quantitative research method, such as a survey-based approach using a Likert scale (e.g., 1 = very unlikely to 5 = very likely to return or recommend the company). The variable I would be working with is:
Type of Variable: Ordinal
Explanation:
-
Customer loyalty measured on a Likert scale is considered ordinal because the responses represent a meaningful order (e.g., from low loyalty to high loyalty), but the intervals between the points are not necessarily equal.
-
For example, the difference between “very unlikely” and “unlikely” may not be perceived the same as the difference between “likely” and “very likely.”
How This Affects Evaluation:
-
Since ordinal data does not assume equal spacing between categories, I would use non-parametric statistical tests to evaluate the data.
-
Appropriate analysis techniques might include median or mode for central tendency, and tests like the Mann-Whitney U test or Kruskal-Wallis test to compare loyalty levels between groups (e.g., before vs. after protocol change).
-
I would avoid using means or standard deviations, which are more appropriate for……..